Characterization of a method for aerosol generation from heavy fuel oil (HFO) as an alternative to emissions from ship diesel engines
نویسندگان
چکیده
This work describes a laboratory method to synthesize aerosols with properties similar to those emitted by ocean going ships. In this method, an oxy-hydrogen flame burner nebulizes and combusts heavy fuel oil (HFO). The oil was fed to the burner via a syringe pump at a maximum rate of 15 ml/h. Adjusting the feed temperature of the oil and the use of a quenching ring in the burner, it is possible to obtain an aerosol with a mode diameter of about 11 nm. This is close to the reported 5–8 nm for the nano-mode of ship emissions. Filter samples were also analyzed for elemental carbon, organic carbon and anion composition. No elemental carbon mass was detected and only a few sulfur containing compounds were present. A chemical equilibrium model was applied for both oxy-hydrogen flame and 2-stroke ship diesel engine combustion conditions to predict equilibrium concentrations, chemical formula and phase of vanadium and nickel containing compounds. The model confirmed that the real-world ship diesel engine and the oxy-hydrogen flame burner combustion processes produced the same vanadium, nickel and sulfur particulate matter (PM) products in terms of chemical formula and phase. Both the 5–8 nm particles from real-world ship emissions and the laboratory synthesized particles contain transition metals. Transmission electron microscope (TEM) images of laboratory synthesized particles show similar morphology to those sampled from a ship. Cloud condensation nuclei (CCN) measurement indicates that neither laboratory generated nor ship emitted aerosol is hygroscopic. To our knowledge, this is the first time the 5–8 nm particles emitted from ships have been aptly synthesized on a laboratory scale. & 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel
Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, incl...
متن کاملCombustion Performance and Emission Characteristics of a Diesel Engine Using a Water-Emulsified Heavy Fuel Oil and Light Diesel Blend
Using low price heavy fuel oil (HFO) in high-speed diesel engines is a practical way to reduce running costs. However, most high-speed diesel engines’ fuel systems and combustion systems cannot adapt to HFO. This causes the problem of deterioration of combustion performance. In order to solve this problem, the authors have modified the fuel injection system and combustion system of a high-speed...
متن کاملDetermination of Emission Factors from Commercial Marine Vessels
EXTENDED ABSTRACT Commercial marine vessels range in size from small fishing boats (20-30 meters in length) to extremely large tanker ships (>300 meters in length). These ships almost without exception use diesel engines for propulsion and auxiliary power generation. The larger ships, comprising bulk carriers, tankers and container carriers, utilize slow-speed diesel (SSD) engines that produce ...
متن کاملParticulate Matter from Both Heavy Fuel Oil and Diesel Fuel Shipping Emissions Show Strong Biological Effects on Human Lung Cells at Realistic and Comparable In Vitro Exposure Conditions
BACKGROUND Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. OBJECTIVES To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit a...
متن کاملNumerical study of the effect of fuel injection timing on the ignition delay, performance parameters and exhaust emission of gas/dual fuel diesel engine using Computational Fluid Dynamics
Today, due to the various usage of compression ignition engines in urban transportation, as well as the need to reduce exhaust emissions and control fuel consumption, the use of alternative fuels has become common in diesel engines. Gaseous fuel is one of the most common alternative fuels that can be used in diesel engines. The utilization of alternative fuels in compression ignition engines re...
متن کامل